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Genetic and transcriptional evolution 
alters cancer cell line drug response
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Francisca Vazquez1, Bang Wong1, chet Birger1, Mahmoud Ghandi1, Aaron r. thorner2, Joshua A. Bittker1, Matthew Meyerson1,2,3, 
Gad Getz1,4, rameen Beroukhim1,2,3,5,7* & todd r. Golub1,2,3,6,7*

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the 
extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. 
Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. 
Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered 
rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, 
genetic changes were associated with differential activation of gene expression programs and marked differences in 
cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive 
clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that 
continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 
321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly 
inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences 
of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to 
support maximally reproducible cancer research.

Human cancer cell lines have facilitated fundamental discoveries in 
cancer biology and translational medicine1. An implicit assumption 
has been that cell lines are clonal and genetically stable, and therefore 
that results obtained in one study can be readily extended to another. 
However, findings involving cancer cell lines are often difficult to repro-
duce2,3, leading investigators to conclude that the findings were either 
weak or the studies not carefully conducted. For example, although 
pharmacogenomic profiling of large collections of cancer cell lines 
have proven to be mostly reproducible, some discrepancies in drug 
sensitivity remain unexplained4–11. We hypothesized that cancer cell 
lines are neither clonal nor genetically stable, and that this instability 
can generate variability in drug sensitivity.

Cross-laboratory comparisons
To test the hypothesis that clonal variation exists within established 
cell lines, we reanalysed whole-exome sequencing data from 106 cell 
lines generated by both the Broad Institute (the Cancer Cell Line 
Encyclopedia (CCLE)) and the Sanger Institute (the Genomics of Drug 
Sensitivity in Cancer (GDSC)), using the same analytical pipeline for 
both datasets (Methods).

As expected, estimates of the allelic fraction of germline variants 
were nearly identical across the two datasets (median r = 0.95), indi-
cating that sequencing artefacts do not substantially contribute to the 
erroneous appearance of low allelic fraction calls. However, the degree 
of agreement in allelic fraction for somatic variants was substantially 
lower (median r = 0.86; P < 2 × 10−16; Fig. 1a, Extended Data Fig. 1a 
and Supplementary Table 1). Moreover, a median of 19% of the detected 
non-silent mutations (range, 10–90%) were identified in only one of the 
two datasets (Extended Data Fig. 1b). Similarly, 26% of genes that had 

copy number alterations (CNAs; which are also known as copy number 
variants) (range, 7–99%) were discordant (Extended Data Fig. 1c–e). 
These results indicate that genetic variability across cultures of the same 
cell line is common. Indeed, a median of 22% of the genome was esti-
mated to be affected by subclonal events across 916 CCLE cell lines 
(Extended Data Fig. 1f), suggesting that changes in subclonal compo-
sition may underlie the observed differences.

Genetic variation across 27 MCF7 strains
We performed extensive genomic characterization of 27 versions  
(hereafter called ‘strains’) of the commonly used oestrogen  
receptor (ER)-positive breast cancer cell line MCF712–14 (Methods, 
Extended Data Figs. 1g–n, 2a, b and Supplementary Table 2), including 
19 strains that had not undergone drug treatment or genetic manipu-
lation, 7 strains that carried a genetic modification generally consid-
ered to be neutral (for example, introduction of a reporter gene, Cas9  
or a DNA barcode), and one strain (MCF7-M) that had been expanded 
in vivo in mice following anti-oestrogen therapy. Strain M was  
found to be an outlier, consistent with having been through strong 
bottlenecks, and was therefore excluded from downstream quantitative 
analyses.

Ten chromosome arms (25% of the genome) were differentially 
gained or lost in a pairwise comparison of strains (Supplementary 
Table 3). We detected 283 genes with copy number gains and 405 
genes with copy number losses (compared to basal ploidy) in at least 
one strain. Only a small minority of these changes (13% of gains and 
21% of losses) were detected in all strains. Of these changes, 7% of 
gains and 13% of losses were detected in only a single strain, and the 
remaining events were observed variably across strains (Fig. 1b and 
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Supplementary Table 4). The differential events included genes com-
monly gained or lost in breast cancer (for example, TP53, PTEN, EGFR, 
PIK3CA and MAP2K4; Extended Data Fig. 3a). For example, PTEN was 
deleted in 17 strains and retained in the other 10 (Fig. 1c). Similarly, 
the oestrogen receptor gene ESR1 was gained in 12 strains, lost in 6 and 
unaltered in 9 (Fig. 1c), and this correlated with differential expres-
sion of ERα (P = 0.009; Extended Data Fig. 3b, c and Supplementary 
Discussion).

Genetic variation was similarly observed at the level of point  
mutations, small insertions or deletions (indels) and chromosomal 
translocations. Only 35% of 95 non-synonymous single nucleotide 
variants (SNVs) and indels that affected the coding sequence or 
splice regions were shared by all strains: 29% were unique to a single 
strain, and the remaining were present in a subset of strains (Fig. 1d, e, 
Extended Data Fig. 3dj, Supplementary Tables 5, 6 and Supplementary 
Discussion). Similar, albeit lower, variability was observed among 
mutations listed as recurrent in the COSMIC database15, consistent 
with COSMIC mutations tending to be clonal mutations of the found-
ing populations (Extended Data Fig. 3f).

Unsupervised hierarchical clustering analysis, in which genetic  
distance was reflected by the branch lengths of the dendrogram, generated  
a branch structure that accurately reflected the history of the strains. 
For example, strain M, which had been subjected to in vivo passaging 
and drug treatment, was the most genetically distinct; the 11 strains 
used by the connectivity map project16 over a 10-year period clustered 
tightly together; and sibling strains D and E, which were only a few  
passages apart, were the closest to each other (Fig. 1f, g and Extended 
Data Fig. 3g). The genetic distance between strains appeared to be 
affected more by passage number and genetic manipulation than by 
freeze–thaw cycles (Fig. 1h and Extended Data Fig. 4).

Sources of variation
Analysis of variant allelic fractions revealed extensive subclonality 
across strains (Fig. 2a, b and Extended Data Fig. 5a). For example,  
all 27 strains had a PIK3CA-activating mutation (G1633A), but the 
allelic fraction varied from 0.21 to 0.70 (Extended Data Fig. 5b). 
On the basis of allelic fractions and copy number status, 45% of all 
observed mutations were determined to be subclonal (P < 0.01 in a 
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Fig. 1 | Extensive genetic variation across 27 strains of the cancer 
cell line MCF7. a, The distribution of pairwise allelic fraction (AF) 
correlations between the Broad and the Sanger cell lines (n = 106), for 
germline (black) and somatic (grey) SNVs. One-tailed paired Wilcoxon 
rank-sum test. b, The number of gene-level CNAs shared by each number 
of MCF7 strains. Red, gains; blue, losses. c, CNAs of two genes, PTEN 
and ESR1. d, The number of non-silent point mutations shared by each 
number of MCF7 strains. e, The allelic fraction of inactivating mutations 
in the tumour suppressor PTEN. f, Top, unsupervised hierarchical 
clustering of 27 MCF7 strains based on CNA profiles derived from 
low-pass whole-genome sequencing. Orange, strain M subjected to in 
vivo passaging and drug treatment; blue, 11 connectivity map strains 
cultured in the same laboratory without extensive passaging; green, 
strains D and E cultured in the same laboratory and separated by few 

passages; purple, strains I and K separated by Cas9 introduction. Bottom, 
corresponding heat map of the CNA landscapes of the strains relative to 
the median CNA landscape. Red, gains; blue, losses. g, Top, unsupervised 
hierarchical clustering of 27 MCF7 strains, based on their non-silent SNV 
profiles derived from deep targeted sequencing. Colours as in f. Bottom, 
corresponding heat map of the mutation status of non-silent mutations 
across strains. Mutations that were identified in a subset of the strains at 
AF > 0.05 are shown. Yellow, mutation present; grey, mutation absent. 
h, Comparison of the magnitude of CNAs observed following multiple 
freeze–thaw cycles (n = 9; R, A and S versus W, X and Y), extensive 
passaging (n = 5; D versus L versus AA, B versus I and P), and genetic 
manipulations (n = 4; AA versus O, B versus C, I versus J and K). Bar, 
median; box, 25th and 75th percentiles; whiskers, 1.5× IQR of lower and 
upper quartile; circles, data points. Two-tailed Wilcoxon rank-sum test.
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binomial test). PyClone17,18, which reconstructs subclonal structure by 
clustering mutations with similar cellular prevalence, found multiple 
subclones within each MCF7 strain, with varying abundance across 
strains (Fig. 2c). Indeed, for 43% of the non-silent SNVs, cellular  
prevalence differed by >50% across strains (Extended Data Fig. 5c, d 
and Supplementary Table 7).

We next investigated whether clonal dynamics were stochastic or the 
product of selection. We barcoded MCF7 cells (strain D) and evaluated 
the change in barcode representation over time under five culture con-
ditions, each in five replicates. We reasoned that if clonal dynamics were 
stochastic, distinct barcoded populations would emerge in independent  
replicates. By contrast, if pre-existing subclones were selected under  
different conditions, enrichment of the same barcodes would be 
observed in replicate cultures19. Unsupervised hierarchical clustering 
by barcode representation revealed that biological replicates clustered 
together (Fig. 2d and Supplementary Table 8), indicating that pre- 
existing subclones are indeed selected by changes in culture conditions.

Next, we characterized the genetic stability of three wild-type single- 
cell-derived MCF7 clones and five single-cell-derived clones with a 
‘neutral’ genetic manipulation (stable expression of a luciferase reporter; 
Methods, Extended Data Fig. 5e and Supplementary Tables 9, 10).  
Clones derived from the same parental population differed in their 
mutational landscapes: a median of 15% of the non-silent SNVs 
detected in the wild-type parental population (range, 13% to 16%), 
were not observed in their single-cell-derived progeny or vice versa 
(Extended Data Fig. 5f, g).

Moreover, the single-cell clones continued to evolve into heterogeneous 
populations. We propagated two clones for 8–14 months and sequenced 
their DNA at multiple time points (Supplementary Tables 9, 10).  
A median of 13% of the non-silent SNVs (range, 8–16%) were not 
shared between time points (Extended Data Fig. 5g). Similar results 
were observed based on cytogenetic analysis (Extended Data Fig. 5h–k 
and Supplementary Table 11), indicating that even single-cell-derived 
clones are genomically unstable.

Gene expression variation
We next measured transcriptomic variation across the MCF7  
strains using the L1000 assay16,20,21 (Supplementary Table 12).  
Despite an overall similarity in their global gene expression profiles 
(Fig. 3a and Extended Data Fig. 6a), the 27 strains also showed exten-
sive expression variation: 654 genes (median; range, 10–1,574) were 
differentially expressed by at least twofold between pairs of strains 
(P < 0.05, Q < 0.05), and the differentially expressed genes converged 
on important biological pathways (Extended Data Fig. 6b–d and 
Supplementary Table 13). Notably, the 27 strains clustered similarly 
in the space of mutations and expression profiles, and the expected 
downstream consequences of genetic mutations were observed in the 
gene expression variation (Figs. 1f, g, 3b–g, Extended Data Fig. 6e–i 
and Supplementary Table 14). For example, strains with inactivating 
PTEN mutations or activating PIK3CA mutations had decreased PTEN 
and increased mTOR gene expression signatures, respectively (Fig. 3e, f  
and Extended Data Fig. 6g–i). Similarly, copy number loss of ESR1 was 
associated with reduced oestrogen signalling (Fig. 3g and Extended 
Data Fig. 6g).

We further explored gene expression heterogeneity using single- 
cell RNA sequencing of 26,465 individual cells from two parental  
and four single-cell-derived clones (Methods, Extended Data  
Fig. 6j–r and Supplementary Discussion). Unsupervised clustering  
showed that cells from the single-cell-derived clones did not  
cluster independently, but were mixed with the parental popula-
tion, indicating high similarity in overall gene expression (Fig. 3h  
and Extended Data Fig. 6o). Notably, the extent of expression  
heterogeneity among the single-cell-derived clones was not sub-
stantially lower than the heterogeneity of the parental population 
(Extended Data Fig. 6p), and increased with time in culture (Extended 
Data Fig.  6q–r, Supplementary Table  15 and Supplementary 
Discussion). These results indicate that variation in gene expres-
sion arises de novo, in addition to reflecting selection of pre-existing 
subclones22.
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Fig. 2 | Genetic heterogeneity and clonal dynamics underlying genetic 
variation. a, Top, unsupervised hierarchical clustering of 27 MCF7 strains 
based on the allelic fractions of their non-silent SNVs. Colours as in Fig. 1. 
Bottom, corresponding heat map of the allelic fractions of non-silent 
mutations present in a subset of the strains. b, The distribution of allelic 
fractions of non-silent mutations across strains. c, The cellular prevalence 
of mutation clusters across MCF7 strains identified by a PyClone 
analysis. Mutation clusters with differential abundance (a difference in 
cellular prevalence (ΔCP) > 0.15), the clonal cluster (cluster 6; CP ≈ 1 

in all clones) and a cluster unique to MCF7-M (cluster 12) are shown. 
n = mutations per cluster, data are mean ± s.e.m. d, Top, unsupervised 
hierarchical clustering of 27 samples of DNA-barcoded MCF7-D based 
on barcode representation. Dendrogram branches are coloured by culture 
condition. Bottom, corresponding heat map of barcode representation. 
ETP, early time point; RPMI, RPMI 1640 medium; DMEM, DMEM 
medium; DMSO, RPMI 1640 with 0.05% DMSO; ESTDEP, oestrogen-
depleted RPMI 1640 medium; BORT, bortezomib (500 nM; 48 h exposure) 
followed by RPMI 1640.
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Verification in additional cell lines
To exclude the possibility that the variation that we observed across 
MCF7 strains was unique to that cell line, we repeated genomic analyses  
on 23 strains of the commonly used lung cancer cell line A54923 
(Extended Data Fig. 2c, d and Supplementary Tables 16–20). We observed 
a similar level of molecular variation across these strains (Extended 
Data Fig. 7). For example, loss of CDKN2A, the most significantly 
deleted gene in lung adenocarcinomas24, was detected in 5 strains, but a  
normal copy number was retained in the other 18 (Extended Data Fig. 7f). 
Whereas transcriptome analyses showed that oestrogen signall ing  
was the most variable pathway in MCF7 cells (Extended Data Fig. 6c 
and Supplementary Table 13), KRAS signalling was the most variable 
pathway in A549 (Extended Data Fig. 7n and Supplementary Table 20), 
a commonly used model of KRAS-dependent cancer.

The generalizability of our findings was further confirmed by deep 
targeted sequencing of multiple strains from 11 additional cell lines 
(Extended Data Fig. 8 and Supplementary Tables 21–24). Notably, 
genomic instability was not limited to transformed cancer cell lines 
(Supplementary Discussion). For example, the variation across 15 
strains of MCF10A25, a non-transformed human mammary cell 
line, was as high as the variation that we found in MCF7 cancer cells 
(median discordance, 26%; range, 17–40%; Extended Data Fig. 8a, h).

Functional consequences of genomic variation
The extensive genomic variation across strains was associated  
with variation in biologically meaningful cellular properties.  
We examined several measures of basic cellular function, including  
doubling time and cell morphology, using quantitative live cell  
imaging26 (Methods). MCF7 strains varied in doubling times by as much 
as 3.5-fold (median, 31 h; range, 22–78 h; Extended Data Fig. 9a, b).  
Similarly, cell size and shape were highly variable across strains 
(Extended Data Fig. 9c–f and Supplementary Table 25). Clustering 
based on morphological traits was similar to clustering based on 
genomics or transcriptomics (Extended Data Fig. 9g), and genomic 
features correlated with proliferation (Extended Data Fig. 9h, i and 
Supplementary Discussion).

Genomic instability also had major effect on drug response. 
We measured cell viability following treatment with 321 drugs at a  
single concentration (5 μM) across the 27 MCF7 strains (Supplementary 
Table 26). Of these, 55 compounds had strong activity (>50% growth 
inhibition) against at least one strain. However, at least one strain 
was entirely resistant (<20% growth inhibition) to 48 out of these 
55 (87%) active compounds (Fig. 4a, b and Extended Data Fig. 10a). 
The same phenomenon was observed at a more stringent threshold: 
of 42 compounds with strong activity in at least two strains, 33 (79%) 
were inactive in at least two strains (Extended Data Fig. 10b–d, j and 
Supplementary Discussion). All 33 differentially active compounds 
were validated in an eight-point dose–response analysis of each of the 
27 strains (median Spearman’s ρ = 0.42 between screens, P = 3 × 10−9; 
Extended Data Fig. 10k, Supplementary Table 27 and Supplementary 
Discussion).

The high degree of variability in drug response cannot be  
explained by irreproducibility of the assay. First, replicate  
treatments yielded highly concordant results (median Pearson’s 
r = 0.97, P < 2 × 10−16; Extended Data Fig. 10l). Second, compounds 
with the same mechanism of action had similar patterns of activity 
across strains (Fig. 4a, c; P = 3 × 10−7). For example, the same activity 
pattern was observed for three proteasome inhibitors (bortezomib,  
MG-132 and carfilzomib; Fig. 4d), and was associated with bio-
chemically measured differential proteasome activity (Extended Data 
Fig. 10m–o). Third, for 82% of differentially active compounds, we 
found differential gene expression signatures of the mechanism of 
action27 of the compounds between sensitive and insensitive strains 
(P = 2 × 10−5; Fig. 4e–h, Extended Data Fig. 10p–u and Supplementary 
Tables 28, 29).

Indeed, drug response was associated with transcriptional differences 
in relevant pathways. For example, strains sensitive to CDK inhibitors 
had an upregulated cell cycle signature and strains sensitive to PI3K 
inhibitors had an upregulated mTOR signature (Fig. 4f, g and Extended 
Data Fig. 10p, q). Notably, the strains that were the most resistant  
to treatment in general (strains M and Q) showed downregulation 
of drug metabolism pathways (Extended Data Fig. 10v). Differences 
in proliferation rate did not explain the majority of the observed 
differential drug activity (median Spearman’s ρ = 0.017, P = 0.60; 
Supplementary Table 30).

Genetic variation could be linked directly to differential drug 
response. For example, genetic inactivation of PTEN was associated 
with decreased PTEN and increased AKT expression signatures 
(Figs. 1c, e, 3e, f), and increased sensitivity to the AKT inhibitor IV 
(Fig. 4h, i). Similarly, ESR1 loss was associated with reduced oestrogen 
signalling (Figs. 1c, 3g), which was in turn associated with reduced 
sensitivity to tamoxifen or oestrogen depletion (Fig. 4j and Extended 
Data Fig. 10w–x). More broadly, clustering of the MCF7 strains  
based on their drug response was highly similar to clustering based on 
genetics or gene expression (Figs. 1g, 2a, 3b, 4a, Extended Data Fig. 11a 
and Supplementary Discussion). Genome-wide CRISPR screens 
showed that genetic dependencies were affected by genomic variation 
similar to pharmacological dependencies (Extended Data Fig. 11b–f,  
Supplementary Table 31 and Supplementary Discussion), and  
functional analyses revealed that single-cell-derived clones remained 
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phenotypically unstable (Extended Data Fig. 11g–i and Supplementary 
Discussion).

We thus hypothesized that variation across otherwise isogenic strains 
might be harnessed to discover mechanisms of drug sensitivity and 
resistance. Indeed, we found that basal gene expression profiles across 
the 27 MCF7 strains could be more readily connected to the mecha-
nism of action of active drugs than did larger panels of breast cancer cell 
lines derived from different patients5,8 (Fig. 4k, Supplementary Table 32 
and Supplementary Discussion).

Discussion
Our results show that established cancer cell lines, generally thought to 
be clonal, are in fact highly genetically heterogeneous. This heterogeneity  
results both from clonal dynamics (that is, changes in the abundance 
of pre-existing subclones) and from continuous instability (that is, the 
appearance of new genetic variants). Moreover, genetic heterogeneity 
leads to varying patterns of gene expression, which in turn result in 
differential drug sensitivity. These findings have a number of important 
implications, which are summarized in Extended Data Table 1.
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Fig. 4 | Drug-response consequences of genetic and transcriptomic 
variation. a, Top, unsupervised hierarchical clustering of 27 MCF7 strains 
based on their response to the 55 active compounds in the primary screen. 
Colours as in Fig. 1. Bottom, corresponding heat map of the percentage 
of viability change for each compound across strains. Compounds are 
coloured based on their mechanism of action. b, Classification of the 
screened compounds based on their differential activity. Consistent, 
viability change <−50% for all strains; variable, viability change <−50% 
for some strains and >−20% for other strains; intermediate, viability 
change in between these values. c, Comparison of the similarity in drug 
response patterns between compounds that share the same mechanism of 
action (n = 39) and compounds that work through different mechanisms 
(n = 1,439). One-tailed Wilcoxon rank-sum test. d, Highly similar 
differential drug response patterns for three proteasome inhibitors: 
bortezomib, MG-132 and carfilzomib. Each data point represents the 
mean of two replicates. The number of data points per strain is mentioned 
in parentheses. The response pattern with no drug (DMSO control) 

is presented for comparison. e, Schematics of the analysis performed 
to evaluate the association between drug response and transcriptional 
variation. f, Upregulation of the KEGG cell cycle signature in strains 
sensitive to the cell cycle inhibitor alsterpaullone (8 sensitive and 15 
resistant strains). g, Upregulation of mTOR signalling in strains sensitive 
to the PI3K inhibitor BKM-120 (8 sensitive and 5 resistant strains).  
h, Upregulation of the genes that are upregulated when PTEN is knocked 
down in strains sensitive to AKT inhibitor IV (6 sensitive and 9 resistant 
strains). i, Strains with PTEN mutation (n = 12) respond more strongly 
to AKT inhibitor IV than strains without the mutation (n = 14). j, Strains 
with ESR1 copy number loss (n = 5) grow better in oestrogen-depleted 
medium than strains without ESR1 loss (n = 21). k, Comparison of gene 
set enrichment analysis-based MoA identification between the MCF7 
cohort and the CTD2 (n = 15) and GDSC (n = 19) cohorts across matched 
drugs. Two-tailed Fisher’s exact test. For all box plots: bar, median; box, 
25th and 75th percentiles; whiskers, 1.5× the interquartile range of the 
lower and upper quartile; circles, data points.
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We found that changes in clonal composition underlie much of the 
observed variability in cell line behaviour. Such clonal composition 
changes follow selection by particular conditions (for example, growth 
medium) or by genetic manipulations associated with a population 
bottleneck. The genetic distance between cell line strains was strongly 
correlated with their gene expression distance and with their drug- 
response distance. Cell line diversification can therefore be estimated 
using inexpensive profiling methods (Extended Data Fig. 11j). To facil-
itate routine assessment of cell line diversification, we have created the 
Cell STRAINER (strain instability profiler) portal (https://cellstrainer.
broadinstitute.org), where users can upload cell line genomic data and 
measure their strain’s genetic distance from a reference.

Variation within cancer cell lines can also be useful in at least 
two ways. First, deeper characterization (for example, by single-cell 
sequencing) of the heterogeneity within cultures of common cell lines 
could enable the study of cooperative and competitive interactions 
between cancer cell populations28,29 and mechanisms of pre-existing 
drug resistance19. Second, owing to their matched genetic background, 
naturally occurring ‘isogenic-like’ strains could help to uncover the 
association between molecular features and phenotypes such as drug 
response.

We conclude that cancer cell lines remain a powerful tool for cancer 
research, but their genomic evolution leads to a high degree of varia-
tion across cell line strains, which must be considered in experimental 
design and data interpretation.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0409-3.
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MEthodS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Cell culture. The MCF7, HT29, MDAM453 and A375 cell lines were cultured in 
RPMI 1640 (Life Technologies), with 10% fetal bovine serum (Sigma-Aldrich) and 
1% penicillin–streptomycin–glutamine (Life Technologies). The A549, VCaP, PC3, 
HCC515, HepG2, HeLa and Ben-Men-1 cell lines were cultured in DMEM (Life 
Technologies), with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin–
streptomycin–glutamine (Life Technologies). The HA1E cell line was cultured in 
MEMα (Life Technologies), with 10% fetal bovine serum (Sigma-Aldrich) and 
1% penicillin–streptomycin–glutamine (Life Technologies). The MCF10A cell 
line was cultured in MEGM Mammary Epithelial Cell Growth Medium (Lonza) 
supplemented with the MEGM Bulletkit (Lonza). The single-cell-derived clones 
scWT3, scWT4 and scWT5, as well as their parental MCF7 population, were cul-
tured in DMEM (Life Technologies), with 10% fetal bovine serum (Sigma-Aldrich), 
1% penicillin–streptomycin–glutamine (Life Technologies) and 10 μg ml−1 insulin 
(Sigma-Aldrich). Cells were incubated at 37 °C, 5% CO2 and passaged twice a week 
using Trypsin-EDTA (0.25%) (Life Technologies). All strains of the same cell line 
were cultured under the same conditions, cell identity was confirmed and the cells 
were confirmed to be mycoplasma-free. Cells were tested for mycoplasma contam-
ination using the MycoAlert Mycoplasma Detection Kit (Lonza), according to the 
manufacturer’s instructions. Cell line identity was confirmed using SNP-based 
DNA fingerprinting (see below).
Derivation of single-cell clones. The wild-type single-cell-derived MCF7 clones 
were generated by cell sorting. Single cells were sorted into individual wells of 
96-well plates, using a BD FACSAriaII SORP Cell Sorter. Three resultant clones 
were expanded for a period of approximately three months before the experiments. 
The genetically manipulated single-cell-derived MCF7 GREB1 and MCF7 ESR1 
clones were generated using CRISPR–Cas9-mediated genome engineering to insert 
a NanoLuciferase reporter gene into the 3′ UTR of the respective genes. In brief, a 
selectable reporter gene cassette was engineered using the EMCV IRES element to 
drive expression of the destabilized NLucP reporter gene (Promega) fused to the 
N terminus of the BSR blasticidin-resistance gene (Invivogen) containing a P2A 
self-cleaving peptide element. For targeting GREB1, the reporter gene cassette was 
subcloned into a construct containing approximately 2 kb of the GREB1 gene sur-
rounding the termination codon in exon 33, such that the reporter gene cassette is 
located 9 bp downstream of the GREB1 termination codon in the resulting mRNA 
hybrid transcript. A GREB1-specific sgRNA was generated that recognized the 
sequence GCTGACGGGACGACACATCTG on the sense strand, using a PAM site 
that is adjacent to the GREB1 termination codon. For targeting ESR1, the reporter 
gene cassette was subcloned into a construct containing approximately 2 kb of ESR1 
gene surrounding the termination codon in exon 8, such that the reporter gene 
cassette is located 21 bp downstream of the ESR1 termination codon in the resulting 
hybrid mRNA transcript. An ESR1-specific sgRNA was generated that recognized 
the sequence GTCTCCAGCAGCAGGTCATAG on the anti-sense strand, using a 
PAM site that is 160 bp upstream of the ESR1 termination codon. Corresponding 
Cas9 sgRNA and targeting construct pairs were transiently transfected into MCF7 
cells using Lipofectamine 2000 (Thermo Fisher Scientific). After growth for seven 
days, the cells were cultured in medium containing 5 μg ml−1 blasticidin to select 
for the desired recombinants. Single-cell clones were then isolated by limiting- 
dilution single-cell cloning in 96-well plates.
Growth rate analysis. Cells were seeded in triplicates in white, clear-bottom, 
96-well plates (Corning, 3903), at a density of 5,000 cells per well. Plates were 
incubated in an IncuCyte ZOOM instrument (Essen Bioscience) at 37 °C, 5% 
CO2. Four non-overlapping phase-contrast images (10×) were taken every 2 h 
for a total of 160 h. IncuCyte ZOOM software (version 2015A) was used to calcu-
late the mean confluence per well at each time point (filtered to exclude objects 
smaller than 100 μm2), and averaged across wells to calculate the mean conflu-
ence per strain. Doubling times were calculated for each strain, using the formula 
Tdoubling = (log2(ΔT))/(log(c2) − log(c1)), in which c1 and c2 were the minimum and 
maximum percentage confluency during the linear growth phase, respectively, and 
ΔT was the time elapsed between c1 and c2. To account for potential differences in 
cell recovery following seeding, t = 0 h was defined as the first time point in which 
the mean strain confluency surpassed a threshold of 15%. To examine the effect 
of oestrogen depletion on the growth of MCF7 strains, cells were cultured either 
in standard conditions (described above) or in oestrogen-depleted conditions: 
RPMI 1640 without phenol red (Life Technologies), with 10% charcoal-stripped 
fetal bovine serum (Life Sciences) and 1% penicillin–streptomycin–glutamine (Life 
Technologies). Comparison between standard and oestrogen-depleted conditions 
was performed by calculating the fold change in doubling time between the two 
conditions.
Cell painting. Cells were plated in triplicate at a density of 1,000 cells per well, 
and then stained and fixed as previously described26,30. Images were taken on a 

Perkin-Elmer Opera Phenix microscope with a 20×/1.0NA water-immersion lens. 
Image quality control was carried out as previously described31, using CellProfiler30 
and CellProfiler-Analyst31. For all 27 MCF7 strains, the majority of images in all 
three wells passed quality control, and therefore all strains were further considered. 
Image illumination correction and analysis were performed in CellProfiler. For 
each of the 27 MCF7 strains, the median value of the 1,784 measured features was 
computed and used for hierarchical clustering.
DNA and RNA extraction. Genomic DNA was extracted using the DNeasy Blood 
& Tissue Kit (Qiagen), according to the manufacturer’s protocol. Total RNA was 
extracted using the RNeasy Plus Mini Kit (Qiagen), according to the manufac-
turer’s protocol.
DNA fingerprinting. Fingerprinting analysis was performed using 44 polymor-
phic loci. ‘GenotypeConcordance’ (Picard tools) was used to calculate the concord-
ance between each pair of samples (separately for the MCF7 and A549 cohorts). 
Samples with >95% concordance were called a match.
Ultra-low-pass whole-genome DNA sequencing. Copy number characteriza-
tion was performed using low-pass (approximately 0.2× coverage) whole-genome 
sequencing. Libraries were prepared from 50 ng of DNA using ThruPLEX-DNAseq 
sample preparation kits (Rubicon Genomics) according to the manufacturer’s pro-
tocol. The resultant libraries were quantified using a Qubit fluorometer (Agilent 
TapeStation 2200) and RT–qPCR using the Kapa Library Quantification kit (Kapa 
Biosystems), according to the manufacturer’s protocol. Uniquely indexed libraries 
were pooled in equimolar ratios and sequenced on a single Illumina NextSeq500 
run with paired-end 35-bp reads, at the Dana-Farber Cancer Institute Molecular 
Biology Core Facilities. The reads were aligned to the UCSC hg19 reference 
genome, using ‘BWA-MEM’ (v.0.07.15), with default parameters.
Ultra-low-pass whole-genome DNA-sequencing data analysis. The ichorCNA 
algorithm32 was applied to identify CNAs of large genomic segments, chromo-
some arms and whole chromosomes. First, the genome was divided into 1-Mb 
bins and read counts were generated for each bin using the HMMcopy Suite 
(http://compbio.bccrc.ca/software/hmmcopy/). The raw read counts were then 
normalized to correct for GC content and mapability biases using the HMMcopy 
R package33, generating corrected read counts for each 1-Mb bin. Segmentation 
and copy number prediction for each sample were performed using ichorCNA 
v.0.1.0 (https://github.com/broadinstitute/ichorCNA), which is optimized  
for low-coverage whole-genome sequencing. Parameters were initialized  
based on prior knowledge: –normal = 0.01, –ploidy = c(3, 3.5, 4), –txnE = 0.99999, 
–txnStrength = 10,000, –maxCN = 8. Remaining parameters were set to the default. 
For bin-level comparison between strains, we used the log2-transformed corrected 
read counts and determined gain and loss status using thresholds of 0.1 and −0.1, 
respectively. For arm-level calls, the copy number status was determined based on 
the largest overlapping segment.
Deep targeted sequencing. Deep (approximately 250× coverage) targeted exon 
sequencing of 447 genes that are commonly mutated in cancer was performed 
(Profile OncoPanel v.3). Prior to library preparation, DNA was fragmented 
(Covaris sonication) to 250 bp and further purified using Agentcourt AMPure XP 
beads. Size-selected DNA was ligated to sequencing adaptors with sample-specific 
barcodes during automated library preparation (SPRIworks, Beckman-Coulter). 
Libraries were pooled and sequenced on an Illumina Miseq to estimate library 
concentration based on the number of index reads per sample. Library construc-
tion was considered to be successful if the yield was ≥250 ng, and all samples had 
sufficiently high yields. Normalized libraries were pooled in batches, and hybrid 
capture was performed using the Agilent Sureselect Hybrid Capture kit with the 
POPv3_824272 bait set34. The list of 447 genes included in POPv3_824272 is  
provided as Supplementary Table 2. Captures were then pooled and sequenced 
on one HiSeq3000 lane. Pooled sample reads were deconvoluted and sorted using 
Picard tools (http://broadinstitute.github.io/picard). The reads were aligned to the 
reference sequence b37 edition from the Human Genome Reference Consortium 
using ‘bwa aln’ (http://bio-bwa.sourceforge.net/bwa.shtml), with the following 
parameters: ‘-q 5 -l 32 -k 2 -o 1’, and duplicate reads were identified and removed 
using Picard tools35. The alignments were further refined using the GATK tool 
for localized realignment around indel sites (https://software.broadinstitute.org/
gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_ 
indels_IndelRealigner.php). Recalibration of the quality scores was also  
performed using GATK tools (http://gatkforums.broadinstitute.org/discussion/44/
base-quality-score-recalibration-bqsr)36,37. Metrics for the representation of each 
sample in the pool were generated on the unaligned reads after sorting on the 
barcode (http://broadinstitute.github.io/picard/picard-metric-definitions.html). 
All samples achieved the CCGD recommended threshold of >30× coverage for 
>80% of the targeted bases. Average mean exon target coverage was 251.5× (range: 
171.5–336.7×) for the MCF7 samples, 288.9× (range: 208.2–398.9×) for the A549 
samples and 257.32 (range 211.7–442.68×) for the additional cell line samples.
Targeted sequencing data analysis. Mutation analysis for SNVs was performed  
using MuTect v.1.1.438. Indel calling was performed using the SomaticIndelDetector 
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tool in GATK (http://www.broadinstitute.org/cancer/cga/indelocator). 
Consecutive variants in the same codon were reannotated to maximize the effect 
on the codon and marked as ‘Phased’ variants. MuTect was run in paired mode, 
pairing the MCF7 or A549 samples to a normal sample, CEPH1408. Mutations 
were called if detected in >2% of the reads (AF > 0.02). All SNVs, indels and 
phased variants were annotated with Variant Effect Predictor39. Variants were fil-
tered against the 6,500 exome release of the Exome Sequencing Project database. 
Variants that were represented more than once in either the African- or European–
American populations and were found less than twice in COSMIC were considered 
to be germline (given that no matched normal samples were available). A germline 
filter was not applied to the downstream analyses, as changes in such mutations 
between strains of the same cell line would have to arise in culture and may be 
functionally relevant. Non-silent mutations were considered to be those with the 
following BestEffect Variant Classification: missense, initiator codon, nonsense, 
splice acceptor, splice donor, splice region, frameshift, inframe insertion or inframe 
deletion. Mutations that appeared more than once in COSMIC were regarded as 
COSMIC mutations. The complete lists of variants (SNVs, indels and phased) for 
MCF7, A549 and additional cell lines are provided in Supplementary Tables 5, 17 
and 23, respectively.

CNAs were identified using RobustCNV, an algorithm that relies on localized 
changes in the mapping depth of sequenced reads in order to identify changes 
in copy number at the sampled loci (M. Ducar et al. manuscript in preparation). 
Systematic bias in mapping depth was reduced using robust regression, fitting 
the observed tumour mapping depth against a panel of normal samples captured 
using the same bait set. Observed values were then normalized against predicted 
values and expressed as log2 ratios. A second normalization step was performed 
to remove GC bias, using a LOESS fit. log2 ratios were centred on segments that 
were determined to be diploid based on the allele fraction of heterozygous SNPs in 
the targeted panel. Normalized coverage data were next segmented using Circular 
Binary Segmentation40 with the ‘DNAcopy’ Bioconductor package. Finally, seg-
ments were assigned gain, loss or normal-copy calls using a cutoff derived from the 
within-segment standard deviation of post-normalized mapping depths. Owing 
to the high data quality and low within-segment standard deviation, a cutoff of 
around 0.1 was applied to all samples. Segment calls were summarized to gene 
calls by assigning them to capture intervals, and then counting the interval calls 
for each gene. Gene level calls were determined according to the following rules: 
‘gain’ = ‘+’ calls >50%; ‘loss’ = ‘−’ calls >2 or in 100%; ‘gain + loss’ = ‘−’ calls >2 
times and ‘+’ calls <50%; ‘mixed’ = ‘+’ and ‘–’ calls in the same gene, but below 
threshold; ‘normal+’ = ‘+’ calls, but below threshold; “’normal−’ = ‘−’ calls, but 
below threshold; ‘Normal’ = no ‘+’ or ‘−’ calls. The complete list of CNAs for 
MCF7, A549 and additional cell lines are provided as Supplementary Tables 4, 16 
and 22, respectively.

For a subset of 60 genes (listed in Supplementary Table 2), rearrangements 
(structural variants) were detected using BreaKmer41, which is designed to detect 
larger genomic structural variations from single-sample-aligned short-read  
target-captured high-throughput sequencing data. In brief, the method extracts 
‘misaligned’ sequences from a targeted region, such as split reads and unmapped 
mates, assembles a contig from these reads, and re-aligns the contig to make a 
variant call. It classifies detected variants as ‘insertions/deletions’, ‘tandem dupli-
cations’, ‘inversions’ and ‘translocations’. The complete lists of structural variants 
for MCF7 and A549 are provided in Supplementary Tables 6 and 18, respectively. 
Rearrangements were visualized using the ‘Circos’ visualization tool40.
Clonality analysis. To resolve clonal dynamics and composition, we applied the 
PyClone algorithm v.0.13.0 (https://bitbucket.org/aroth85/pyclone/wiki/Home) to 
the measured allelic fractions, accounting for copy number, loss of heterozygosity 
and cellularity17. PyClone enabled us to follow clonal dynamics throughout the 
evolution of cell populations17,18. For copy number input, we used results from 
ichorCNA segmentation and copy number predictions. Mutations with <50 read 
depth were excluded. The following parameters were used for PyClone: 10,000 
iterations, 1,000 burn-in, ‘total_copy_number’ for the prior. We also performed 
multi-sample analysis using PyClone, to determine the changes in clonal com-
position across strains. For the multi-sample analysis, mutations were selected as 
the union set across all 27 strains. The same parameters were used for PyClone 
multi-sample analysis as for the individual-sample runs.
DNA barcoding experiment. Degenerate oligonucleotides for sgRNA–barcode 
library construction were synthesized by IDT and cloned into lentiGuide-Puro42 by 
Gibson assembly, as previously described43. Approximately 300 μg of Gibson prod-
uct was transformed into 25 μl of Endura electrocompetent cells (Lucigen). After a 
1-h recovery period, 0.1% of transformed bacteria were plated in a tenfold dilution 
series on ampicillin-containing plates to determine the number of successful trans-
formants. The remainder of the transformed bacteria were cultured in 50 ml of LB 
with 50 μg ml−1 ampicillin for 16 h at 30 °C. Plasmid libraries were extracted using 
a Plasmid MidiPlus kit (Qiagen) and sequenced to a depth of 6.2 million reads 
on a Illumina Miniseq, corresponding to 6× coverage of >1 million barcodes. 

Lentivirus was prepared by transfecting a total of 10 million HEK293FT cells, as 
previously described43. The MCF7-D strain was cultured in standard conditions 
(described above), and four million cells were infected with a low multiplicity  
of infection (20–30%) to reduce the probability of each cell being infected with 
more than one barcode. Cells underwent puromycin selection, and the final cell 
pool contained approximately 160,000 unique barcodes. Cells were expanded for 
the experiment, and five million cells were then plated into 25 tissue culture flasks. 
Five culture conditions were then applied (with five replicates per condition): (1) 
RPMI 1640 (Life Technologies) with 10% fetal bovine serum (Sigma-Aldrich) 
and 1% penicillin–streptomycin–glutamine (Life Technologies); (2) DMEM (Life 
Technologies) with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin–
streptomycin–glutamine (Life Technologies); (3) RPMI 1640 without phenol red 
(Life Technologies), with 10% charcoal-stripped fetal bovine serum (Life Sciences) 
and 1% penicillin–streptomycin–glutamine (Life Technologies); (4) RPMI 1640 
(Life Technologies) with 10% fetal bovine serum (Sigma-Aldrich), 1% penicillin–
streptomycin–glutamine (Life Technologies) and 0.05% DMSO (Sigma-Aldrich); 
(5) RPMI 1640 (Life Technologies) with 10% fetal bovine serum (Sigma-Aldrich) 
and 1% penicillin–streptomycin–glutamine (Life Technologies), supplemented 
for the first 48 h with 500 nM bortezomib (Selleckchem, S1013). After five weeks 
of culture, DNA was extracted and barcode abundance was assessed by DNA 
sequencing, as previously described43. Libraries were sequenced to a median depth 
of 4.2 million reads, corresponding to a barcode coverage of >26×.
Transcriptional profiling with L1000. The L1000 expression-profiling assay 
was performed as previously described16. First, mRNA was captured from cell 
lysate using an oligo dT-coated 384-well Turbocapture plate. The lysate was then 
removed, and a reverse-transcription mix containing MMLV was added. The plate 
was washed and a mixture containing both upstream and downstream probes for 
each gene was added. Each probe contained a gene-specific sequence, along with 
a universal primer site. The upstream probe also contained a microbead-specific 
barcode sequence. The probes were annealed to the cDNA over a 6-h period, and 
then ligated together to form a PCR template. After ligation, Hot Start Taq and 
universal primers were added to the plate. The upstream primer was biotinylated 
to allow later staining with streptavidin–phycoerythrin. The PCR amplicon was 
then hybridized to Luminex microbeads via the complimentary, probe-specific 
barcode on each bead. After overnight hybridization the beads were washed and 
stained with streptavidin–phycoerythrin to prepare them for detection in Luminex 
FlexMap 3D scanners. The scanners measured each bead independently and 
reported the bead colour and identity and the fluorescence intensity of the stain. 
A deconvolution algorithm converted these raw fluorescence intensity measure-
ments into median fluorescence intensities for each of the 978 measured genes, 
producing the GEX level data. These GEX data were then normalized based on an 
invariant gene set, and then quantile-normalized to produce QNORM level data. 
An inference model was applied to the QNORM data to infer gene expression 
changes for a total of 10,174 features. Per-strain gene expression signatures were 
calculated using a weighted average of the replicates, for which the weights are 
proportional to the Spearman correlation between the replicates.
Transcriptional profiling data analysis. To examine how newly profiled MCF7 
and A549 cells compared in gene expression to a previously acquired collection of 
cell line profiles (untreated samples that served as controls for connectivity map 
perturbational experiments), we used t-SNE. Profiles were restricted to untreated 
profiles from the nine core connectivity map cell lines, and to batches with  
multiple untreated profiles. Because samples were first clustered based on their 
project codes, batch effect was next removed using the COMBAT algorithm44.  
t-SNE analysis was applied to the batch-corrected data and visualized using a scatter  
plot. Analysis was completed using the ‘Rtsne’ R package version 0.1362. For the 
comparison of transcriptional variation across the nine core connectivity map 
cell lines, the collection of untreated profiles generated with the L1000 assay was 
used. Five profiles from each cell line were randomly chosen, and the expression 
variance of the 978 L1000 landmark genes was calculated for each cell line. For the 
comparison of L1000 gene expression data to the Cancer Cell Line Encyclopedia 
(CCLE) gene expression profiles, RNA-sequencing (RNA-seq) and Affymetrix 
gene expression profiles were downloaded from the CCLE website (https://portals. 
broadinstitute.org/ccle/data). Data within each platform were processed using 
invariant set scaling, which adjusts profiles according the expression of 80 ‘invariant’  
genes, followed by quantile normalization16. The ranked gene expression order of 
the 978 landmark genes was compared using a Spearman’s correlation.
Chemical screening. MCF7 strains were tested against a small-molecule 
informer set library of 321 anti-cancer compounds, assembled by the Cancer 
Target Discovery and Development (CTD2; https://ocg.cancer.gov/programs/
ctd2/data-portal), using the same principles as those described in the Cancer 
Therapeutics Response Portal8,45. The list of screened compounds is included as 
Supplementary Table 26. Cells were seeded in their culture medium in white, 384-
well plates (Corning, 3570) at an initial density of 2,500 cells per well and incubated 
overnight at 37 °C, 5% CO2. The next day, 25 nl (for primary screen) or 100 nl  
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(for confirmation dose–response screen) of compound stocks in DMSO were 
added by pin transfer. Plates were incubated for 72 h, cooled at room temperature 
for 10 min, and viability was measured using the CellTiter-Glo luminescent cell 
viability assay (Promega), according to the manufacturer’s protocol. After 10 min 
of incubation, luminescence was read on a Perkin Elmer Envision reader, at a 
speed of 0.1 s per well.
Chemical screening data analysis. Data were analysed in Genedata Screener  
version 13.0, using the normalization method ‘neutral controls’, for which the 
median of the 32 DMSO wells on each plate was set to 0% activity and 0 raw signal 
was set to –100%. Positive controls (20 μM MG-132 or 20 μM bortezomib) were 
included on all plates (16 wells each) but were not used for normalization owing 
to variability in the response across cell lines. Dose–response curves were fit using 
the ‘Smart Fit’ strategy in Genedata. The percentage of effect was defined as the 
high-concentration asymptote (sinf) and the qEC50 was the concentration at which 
the fitted curve crossed the inhibitory value representing half of the maximal effect 
(%). In addition, parameters were calculated at which the curve crossed abso-
lute inhibitory values of 30% or 50% regardless of maximal effect (AbsEC30 and 
AbsEC50, respectively). AUC calculations were performed as previously described8: 
curves were fit with nonlinear sigmoid functions, forcing the low concentration 
asymptote to 1 using a three-parameter sigmoidal curve fit. The AUC for each 
compound–strain pair was calculated by numerically integrating under the eight-
point concentration–response curve. For visualization purposes, drug response 
curves were fit with a four-parameter log-logistic function, based on normalized 
viability data from which the lowest dose viability had been subtracted. Plots were 
generated using the “LL.4” function in the ‘drc’ R package (https://cran.r-project.
org/web/packages/drc/). To examine a potential link between proliferation rate 
and differential drug response, doubling times were compared against the AUC 
values of the 33 differentially-active compounds.
Gene set enrichment analysis. Gene set enrichment analysis (GSEA) was per-
formed using the 10,147 genes best inferred from the connectivity map linear 
model33, also known as the BING gene set. Samples were divided into two classes 
depending on the comparisons being made: samples with a genetic alteration 
versus samples without it; samples sensitive to a drug (>50% inhibition) versus 
samples insensitive to the same drug (<20% inhibition). Differential expression 
was calculated using the signal-to-noise metric46. A ranked gene list and signal-
to-noise values served as the input for the GSEA preranked module of GSEA, 
using the Java app version 3.0. The analysis was run using the ‘hallmark’, ‘KEGG’, 
‘positional’ and ‘oncogenic’ signature collections from the Molecular Signature 
Database (MsigDB)27 (http://software.broadinstitute.org/gsea/msigdb). To com-
pare between our MCF7 panel, CTD2 and GDSC, drug responses were downloaded 
from the CTRP website (https://ocg.cancer.gov/programs/ctd2/data-portal; ‘v20.
data.curves_post_qc’ file, updated 14 October 2015) and from the GDSC web-
site (http://www.cancerrxgene.org/downloads; ‘log(IC50) and AUC values’ file, 
updated 4 July 2016). Expression profiles were downloaded from the CCLE web-
site to match the CTD2 drug-response data (https://portals.broadinstitute.org/
ccle/data; ‘CCLE_Expression_Entrez_2012-09-29.gct’, updated 17 October 2012), 
and from the GDSC website to match with the GDSC drug response data (http://
www.cancerrxgene.org/downloads; ‘RMA normalized expression data for cell lines’, 
updated 2 March 2017). Expression profiles were filtered to include only the genes 
that belong to the L1000 BING set. GSEA compared the expression patterns of the 
five strains or cell lines with the highest AUC values for each matched drug with the 
five strains/cell lines with the lowest AUC values for that drug. As the robustness 
of gene expression signatures varies, this quantitative analysis was restricted to the 
50 well-defined hallmark GSEA gene sets27.
Single-cell RNA-seq. MCF7 cells were cultured as described above. To follow  
transcriptional changes after drug treatment, MCF7-AA cells were exposed to 
500 nM of bortezomib (Selleckchem, S1013) and collected before treatment, after 
12 h of exposure (t12), after 48 h of exposure (t48) or after 72 h of exposure followed  
by drug wash and 24 h of recovery (t96). Cells were washed, trypsinized, passed 
through a 40-μm cell strainer, centrifuged at 400g and resuspended at a concentration  
of 1,000 cells per μl in PBS containing 0.5% BSA. Single cells were processed 
through the Chromium Single Cell 3′ Solution platform using the Chromium 
Single Cell 3′ Gel Bead, Chip and Library Kits (10X Genomics) per the manu-
facturer’s protocol. In brief, 7,000 cells were added to each channel and were then  
partitioned into Gel Beads in emulsion in the Chromium instrument, where cell 
lysis and barcoded reverse transcription of RNA occurred, followed by ampli-
fication, shearing and 5′ adaptor and sample index attachment. Libraries were 
sequenced on an Illumina NextSeq 500.
Single-cell RNA-seq data analysis. Reads were mapped to the GRCh38 human 
transcriptome using cell ranger version 2.1.0, and transcript-per-million values 
were calculated for each gene in each filtered cell barcoded sample. Transcript-per- 
million values were then divided by 10, since the complexity of single-cell libraries 
is estimated to be in the order of 100,000 transcripts. For each cell, we quantified 
the number of expressed genes and the proportion of the transcript counts derived 

from mitochondrial genes. Cells with either <1,000 detected genes or >0.15 
mitochondrial fraction were excluded from further analysis. Finally, the resulting 
expression matrix was filtered to remove genes detected in <3 cells. We focused 
on highly variable genes for downstream principal component analysis (PCA). 
For each dataset, we used the Seurat47 (http://satijalab.org/seurat/) R package to 
detect variable genes based on fitting a relationship between the mean and the dis-
persion of each gene. We next scaled the data and regressed out unique molecular 
identification number and mitochondrial gene fraction to remove technical noise. 
The resulting scaled data were used as an input for PCA. Top significant principal 
components, estimated by a manual inspection of the PCA standard deviations 
elbow plots, were used to generate t-SNE plots. For each dataset, we used Seurat47 
(http://satijalab.org/seurat/) to identify genes that vary between samples. To detect 
differentially active pathways, gene ontology (GO) enrichment analysis was per-
formed with MSigDB27 (http://software.broadinstitute.org/gsea/msigdb) using 
the differentially expressed genes that passed the following thresholds: |log2(fold 
change)| > 0.25, Bonferroni-corrected P < 0.01, the gene was detected in >10% of 
the cells in each of the compared groups. Expression signatures for selected path-
ways were downloaded from MSigDB27. We evaluated the degree to which indi-
vidual cells express a certain expression signature by using a procedure that takes 
into account the variability in signal-to-noise ratio, as previously reported48. To 
calculate pairwise cell distances, variable genes were detected, and the cell embed-
ding matrix for the top significant principal components was used to calculate the 
Euclidean distance between every two cells within each sample.
Analysis of genome-wide CRISPR screens. CERES dependency scores49 were 
obtained from the Broad Institute Achilles website (https://portals.broadinstitute.
org/achilles/datasets/18/download). Owing to an unusually large difference in 
screen quality between MCF7 and KPL1, the subtle differences in dependency 
status between these lines were dominated by effects related to screen quality. To 
remove these uninteresting sources of variation, we corrected CERES gene scores 
by removing their first six principal components. These components were well- 
explained by experimental batch effects related to screen performance and plasmid 
DNA pool. Corrected dependency scores <−0.5 were defined as dependencies. 
Genes listed as ‘pan_dependent’ in the original dependency dataset were excluded 
from further analysis. For a more stringent overlap comparison, genes with CERES 
scores between −0.4 and −0.6 in MCF7 or KPL1 were further excluded. To  
implement the force-directed layout, described in Extended Data Fig. 11b, the full 
corrected dependency matrix was reduced to its top 100 principle components 
and a k-means clustering algorithm was run repeatedly on cell lines. Here, k is the 
number of clusters, and the mean cluster size (number of cell lines) divided by k 
is a parameter similar to perplexity in t-SNE, set to 6 for our data. Edges between 
cells were weighted according to the frequency with which they clustered together, 
with edges appearing less than 30% of the time ignored. Cells were then laid out 
using the SFPD spring-block algorithm50. Cell line RNA-seq gene expression data 
and reverse-phase protein array protein expression data were obtained from the 
CCLE website (https://portals.broadinstitute.org/ccle/data). Single-sample GSEA 
was calculated using the ssGSEA algorithm51.
Chymotrypsin-like activity. MCF7 cells were plated in triplicates in 96-well plates 
at a density of 20,000 cells per well. After 24 h, chymotrypsin-like activity of the 
proteasome was assayed, using the Proteasome-Glo assay (Promega), according 
to manufacturer’s protocol. The activity levels were normalized to the relative cell 
number that was measured using the fluorescent detection of resazurin dye reduc-
tion (544-nm excitation and 590-nm emission).
Western blots. For PSMC2 and PSMD2 immunoblotting, cells were lysed in 
HENG buffer (50 mM HEPES-KOH pH 7.9, 150 mM NaCl, 2 mM EDTA pH 8.0, 
20 mM sodium molybdate, 0.5% Triton X-100, 5% glycerol), with protease inhibitor 
cocktail (Roche Diagnostics, 11836153001). Protein concentrations were deter-
mined by BCA assay (Thermo Fisher Scientific, 23227) and proteins were resolved 
using SDS–PAGE for immunoblot analysis. Antibodies against the following  
human proteins were used: α-tubulin (ab80779, Abcam), PSMC2 (MSS1-104, Enzo 
Life Sciences) and PSMD1 (C-7, Santa-Cruz). Visualization was performed using 
the ChemiDoc MP System (Bio-Rad) and ImageLab Software (Bio-Rad) was used 
to quantify relative band intensities. For ERα immunonblotting, cells were lysed 
with a mix of 4× protein loading buffer (Li-Cor, 928-40004) and 10× NuPAGE 
sample reducing agent (Life Technologies, NP0009). Protein concentration was 
normalized by cell counting and proteins were resolved by SDS–PAGE. Antibodies 
against the following human proteins were used: β-actin (N-21, Santa Cruz), ERα 
(F-10, Santa Cruz). Visualization was performed using the Odyssey CLx imaging 
machine (Li-Cor) and Image Studio Software (Li-Cor) was used to quantify the 
relative intensities.
Generation and comparison of dendrograms. Dendrograms were constructed 
using Euclidean distances for continuous measures and Manhattan distances for 
discrete measures. Complete linkage hierarchical clustering was performed in all 
cases. The mutation status dendrogram was based on mutations with AF > 0.05. 
The gene expression dendrogram was based on the 978 landmark genes directly 
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measured by the L1000 assay. The copy number dendrograms were based on dis-
crete calls (loss, normal or gain) assigned to each event based on its log2 copy 
number ratio, using a cutoff value of ±0.1. The drug-response dendrogram was 
based on normalized viability values. The cell morphology dendrogram was based 
on the full list of the 1,784 measured cellular features. The barcode representation 
dendrogram was based on the log2 transformed number of reads, including only 
barcodes with >1,000 reads in at least one sample. To understand how dendro-
grams from different sources compared, the Fowlkes–Mallows index was used, 
as it could capture similarities in global clustering while ignoring within-group 
variance52. The ‘Bk’ function in the ‘dendextend’ R package was used for com-
putations and visualizations. We compared dendrograms from different sources 
with k values ranging from 5 to 26. A background distribution was calculated by 
randomly shuffling the labels of the trees 1,000 times, and calculating Bk values. 
The 95% upper quantile of the randomized distribution for each k was plotted. 
The maximum Bk value was used to estimate the degree of similarity between the 
compared pair of dendrograms.
Calculation of the distances between strains based on their genomic features. 
CNA distance based on ultra-low-pass whole-genome DNA sequencing was deter-
mined by the fraction of the genome affected by discordant CNA calls. CNA and 
SNV distances based on targeted sequencing were determined by Jaccard indices, 
defined as the number of shared events between strains (intersection) divided by 
the total number of events in these strains (union). For SNVs, both the mutated 
gene and the exact amino acid change had to be identical to be counted as a shared 
event. Gene expression distances were defined as the Euclidean distances between 
L1000 expression profiles. Drug-response distances were defined as the Euclidean 
distances between drug-response profiles, after limiting the drug set to active drugs 
only (that is, drugs that reduced the viability of at least one strain by >50%) and 
setting the threshold for viability values to ±100.
Comparisons across CCLE cell lines. Gene-level mRNA expression, copy num-
ber and mutation status data were downloaded from the CCLE website (https://
portals.broadinstitute.org/ccle/data; ‘CCLE_Expression_Entrez_2012-09-29.gct’, 
updated 17 October 2012; ‘CCLE_copynumber_byGene_2013-12-03.txt’, updated 
27 May 2014; ‘CCLE_MUT_CNA_AMP_DEL_binary_Revealer.gct’, updated  
29 February 2016). The total number of point mutations and copy number changes 
were counted for each cell line. Chromosome arm-level events in CCLE samples 
were generated as previously described53, and the number of arm-level events was 
counted for each cell line. The fraction of the genome affected by subclonal events 
was estimated using ABSOLUTE54. Combined CNA–SNV genomic instability 
scores were calculated as described previousy55. The DNA repair gene set was 
derived from MSigDB (http://software.broadinstitute.org/gsea/msigdb), using 
the ‘DNA_Repair’ GO signature56. The CIN70 gene set was derived from a pre-
vious publication57. For each gene set, genes that were not expressed at all in the 
CCLE dataset were removed, and the remaining gene expression values were log2- 
transformed and scaled by subtracting the gene expression means. The signature 
score was defined as the sum of these scaled gene expression values.
Comparison of Broad (CCLE) and Sanger (GDSC) genomic features. Whole-
exome sequencing data for 107 matched cell lines were downloaded from the 
Sanger Institute (http://cancer.sanger.ac.uk/cell_lines, EGA accession number: 
EGAD00001001039) for the GDSC cell lines, and from the GDC portal (https://
portal.gdc.cancer.gov/legacy-archive) for the CCLE cell lines. For copy number 
analysis, the GATK4 somatic copy number variant pipeline was applied (https://
gatkforums.broadinstitute.org/gatk/discussion/9143/how-to-call-somatic-copy-
number-variants-using-gatk4-cnv)36,37. Gene-level copy number calls were gener-
ated by mapping genes from segment calls using the Consensus Coding Sequence 
database58. The gene-level values were log2 transformed, and converted to discrete 
values using predefined thresholds (±0.1, ±0.3 and ±0.5). To determine the per-
centage of discordance for each cell line, the number of discordant CNA calls 
between each pair of strains was divided by the total number of genes (excluding 
genes with a neutral copy number call in both datasets). For analysis of somatic 
variants, the CCLE–Sanger merged mutation calls were downloaded from the 
CCLE portal (https://portals.broadinstitute.org/ccle/data), and target interval list 
files were generated for each of the 107 matched cell lines in CCLE. Mutation call-
ing was performed using MuTect38, with default parameters and ‘–force_output’ 
enabled, to count the number of reads supporting the reference and alternate allele 
for each variant in each cell line. For analysis of germline variants, a common target 
interval list file that consisted of a panel of 105,995 SNPs was generated, based on 
common SNVs found in 1,019 CCLE RNA-seq samples, and Mutect was applied 
with the same parameters as described above. Comparison of allelic fractions was 
performed using the subset of variants with minimum depth of coverage of 10 in 
both Sanger and CCLE datasets and with minimum of allelic fraction of 0.1 in at 
least one dataset. Out of the 107 cell lines, one cell line (Dov13) lacked any germline 
concordance and was thus excluded from all analyses.
Cytogenetic analysis. Karyotyping was performed by KaryoLogic (www.kar-
yologic.com/) on 50 G-banded metaphase spreads per sample. Every spread  

displayed multiple chromosomal rearrangements with many marker chromo-
somes. A marker was defined as ‘a structurally abnormal chromosome that cannot 
be unambiguously identified by conventional banding cytogenetics’. The analysis 
was performed according to the International System for Human Cytogenetic 
Nomenclature (ISCN) 2016 guidelines. Rare metaphases with >100 chromosomes 
were excluded from further analysis.
e-karyotyping analysis. RNA-seq data from non-manipulated and non-treated 
samples of the near-diploid human cell line RPE1 were downloaded from the NCBI 
SRA website (https://www.ncbi.nlm.nih.gov/sra). STAR-paired aligner was used 
to align paired-end samples, and STAR-non-paired aligner was used to align the 
non-paired samples59. The STAR to RSEM tool60 was used to generate the gene-
level expression values using the GTEx pipeline (https://github.com/broadinstitute/
gtex-pipeline). To infer arm-level copy number changes from gene expression pro-
files, the RSEM values were analysed using the e-karyotyping method61. In brief, 
RSEM values were log2-converted, genes that were not expressed (log2RSEM < 1) 
in >20% of the samples were excluded, and expression levels of the remaining 
genes were floored to RSEM = 1. The median expression value of each gene across 
all samples was subtracted from the expression value of that gene, in order to obtain 
comparative values. The 10% most variable genes were removed from the dataset 
to reduce transcriptional noise. The relative gene expression data were then sub-
jected to a CGH–PCF analysis, with a stringent set of parameters: Least allowed 
deviation = 0.5; Least allowed aberration size = 30; Winsorize at quantile = 0.001; 
Penalty = 18; Threshold = 0.01. CNAs exceeding 80% of the length of a chromo-
some arm were called arm-level CNAs.
Comparison of arm-level CNAs between cell line propagation and tumour 
progression. Recurrence of chromosome arm-level CNAs during breast cancer 
progression was determined by their frequency in TCGA samples, as previously 
described53. Recurrence of chromosome arm-level CNAs during cell line prop-
agation was determined by comparing the arm-level calls of the strains directly 
separated by extensive passaging (strain D versus strain L versus strain AA, strain 
B versus strains I and P), as shown in Extended Data Fig. 2a. Only arms that 
are recurrently gained or lost (but not both) in TCGA (Q < 0.05), and that have 
variable copy number status across the MCF7 panel, were considered for the com-
parison.
Statistical analysis. The significance of the difference between genomic instability 
associated with different sources of genetic variation and difference between chro-
mosome numbers at two time points of single-cell-derived clones was determined  
using the two-tailed Wilcoxon rank-sum test. The significance of the difference in 
the Euclidean distance between compounds that work through the same MoA and 
compounds that work through different MoA’s, in the discordance of non-silent 
SNVs at different stages of transformation, in chromosomal instability (CIN70) 
and weighted-genomic integrity index (wGII) scores between cell lines derived 
from primary tumours and those derived from metastases, between the somatic 
and germline SNV Pearson correlations of the Broad-Sanger cell lines, in the 
Broad-Sanger somatic SNV concordance between microsatellite-stable and micro-
satellite-unstable cell lines and between primary tumour-derived and metastasis- 
derived cell lines was determined using a one-tailed Wilcoxon rank-sum test. The 
significance of the difference in mutation cellular prevalence across strains was 
determined by Kruskal–Wallis test. The significance of the difference in AKT 
inhibitor IV sensitivity between PTENWT and PTENMUT strains, in the relative 
growth effect of ER depletion between ESR1 loss and no-ESR1 loss strains, in pro-
teasome activity between bortezomib-sensitive and bortezomib-insensitive strains, 
in ERα protein expression levels between strains and in the number of arm-level 
CNAs between matched early-late MCF7 strains was determined using a one-tailed 
Student’s t-test. The significance of the difference in doubling times and in sensitivity  
to oestrogen depletion was determined using a two-tailed Student’s t-test. The 
significance of the correlation between the two replicates of the primary screen 
was determined using Pearson’s correlation. The significance of the correlation 
between doubling time and the number of protein coding mutations, the correla-
tion between doubling time and the fraction of subclonal mutations, the correlation 
between doubling time and drug response, were determined using a Spearman’s 
correlation, excluding the broadly resistant strains Q and M. The significance of 
the correlation between ESR1 CERES dependency scores and oestrogen signalling 
and between GATA3 CERES dependency scores and GATA3 protein expression 
levels was determined using a Spearman’s correlation. The deviation of the dou-
bling-time–drug-response correlations from a hypothetical mean value of 0 was 
determined using a two-tailed one-sample t-test. The significance of the difference 
between the emergence and disappearance of recurrent arm-level CNAs during 
cell line propagation was determined using McNemar’s test. The significance of 
the correlation between the primary and secondary drug screens was determined 
using a Spearman’s correlation (including only compounds that were active in 
both screens). The significance of the directionality of drug-pathway association, 
and the likelihood that a mutation would be clonal given the number of reads 
that detected it, were determined using a binomial test. The significance between 
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the fraction of pathways correctly identified between the MCF7 panel, CTD2 and 
GDSC was determined using a two-tailed Fisher’s exact test. GSEA P values and 
FDR-corrected Q values are shown as provided by the default analysis output. For 
the comparison of pathway prediction shown in Supplementary Table 32, FDR 
Q values were recalculated using only the pre-selected pathways. Thresholds for 
significant associations were determined as: P < 0.05; Q < 0.25. The significance 
of the difference in the karyotypic variation between parental and single-cell-clone 
derived cultures was determined using the Levene’s test. The significance of dif-
ferentially expressed genes in the single-cell RNA-seq data was determined by an 
analysis of variance (ANOVA) followed by a Games–Howell post hoc test and a 
Bonferroni correction. Box plots show the median, 25th and 75th percentiles, lower 
whiskers show data within 25th percentile −1.5× the interquartile range (IQR), 
upper whiskers show data within 75th percentile +1.5× the IQR, and circles show 
the actual data points. Statistical tests were performed using the R statistical soft-
ware (http://www.r-project.org/), and the box plots and violin plots were generated 
using the ‘boxplot’ and ‘vioplot’ R packages, respectively.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. The code used to generate and/or analyse the data during the 
current study are publicly available, or available from the corresponding authors 
upon request.
Data availability. The datasets generated during and/or analysed during the cur-
rent study are available within the article, its Supplementary Information or from 
the corresponding authors upon request. DNA sequencing data were deposited 
to SRA with BioProject accession number PRJNA398960. Single-cell RNA-seq 
data were deposited to the Gene Expression Omnibus (GEO, accession number 
GSE114462). Source Data of all immunostaining blots are available in the online 
version of this paper. The cell divergence portal is accessible at: https://cellstrainer.
broadinstitute.org.
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Extended Data Fig. 1 | Comparison of Broad and Sanger genomic 
features across 106 cell lines. a, Comparison of the Pearson correlations 
of germline versus somatic SNVs across 106 paired cell lines. b, A 
histogram of the distribution of mutation discordance fractions across cell 
lines. Black, the distribution of all non-silent SNVs; grey, the distribution 
of the 447 genes included in the Oncopanel. c, Comparison of the fraction 
of discordant gene-level CNAs between the Broad and the Sanger (n = 106 
cell lines) datasets, using three different thresholds for CNA calling. Bar, 
median; box, 25th and 75th percentiles; whiskers, 1.5× IQR of lower and 
upper quartile; circles, data points. d, A histogram of the distribution 
of CNA discordance fractions across cell lines. Bars are coloured as in 
b. e, CNA landscapes of 11 paired cell lines. For each cell line, the CNA 
landscape of the Broad strain (top) and the Sanger strain (bottom) are 
shown. Red, copy number gains; blue, copy number losses. CNAs < 10Mb 
in size are not presented. f, A histogram of the fraction of the genome 
affected by subclonal events across 916 cell lines from the CCLE. MCF7 
and A549 are denoted by arrows. g, All CCLE cell lines ranked by their 
aneuploidy scores. h, All CCLE cell lines ranked by the number of 
their gene-level CNAs. i, All CCLE cell lines ranked by the number of 
their gene-level SNVs. j, All CCLE cell lines ranked by their chromosomal 
instability (CIN70) signature scores57. k, All CCLE cell lines ranked by 
their DNA-repair signature scores56. l, All CCLE cell lines ranked by 
their genomic instability scores55. m, All CCLE cell lines ranked by their 
subclonal genome fraction54. The vertical black line shows the rank of 
MCF7 in each comparison. n, Comparison of gene expression variation 
across multiple strains of nine cell lines, including MCF7. Box plots are the 
standard deviations of the expression levels for the 978 landmark genes 
directly measured in L1000. Bar, median; box, 25th and 75th percentiles; 
whiskers, data within 1.5× IQR of lower or upper quartile; circles, all data 
points.
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Extended Data Fig. 2 | Schematic representation of the MCF7 and A549 
strains included in the current study. a, MCF7 strains included in this 
study; their origins (columns), years of acquisition (rows), manipulations 
(colours) and progeny relationships (lines) are shown. b, A table 

corresponding to a. c, A549 strains included in this study, their origins 
(columns), years of acquisition (rows), manipulations (colours) and 
progeny relationships (lines) are shown. d, A table corresponding to c.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Genetic variation across 27 MCF7 strains.  
a, Variation in the copy number status of nine selected genes across 
27 MCF7 strains. Red, copy number gains; blue, copy number losses. 
Thresholds for relative gains and losses were set at 0.1 and −0.1, 
respectively. b, Western blots of the relative protein expression levels of 
ERα across strains. The expression of β-actin was used for normalization. 
For gel source data, see Supplementary Fig. 1. The experiment was 
repeated twice with similar results. c, Quantification of the relative 
expression of ERα. Strains Q and M were excluded from the comparison. 
Bar, median; box, 25th and 75th percentiles; whiskers, data within 1.5× 
IQR of lower or upper quartile; circles, all data points. One-tailed t-test.  
d, The allelic fractions of non-silent mutations in seven selected genes 
across 27 MCF7 strains. e, The number of non-silent point mutations 
(SNVs) across the 27 MCF7 strains. f, The number of COSMIC  

non-silent point mutations shared by each number of MCF7 strains.  
g, Top, unsupervised hierarchical clustering of 27 MCF7 strains, based 
on all of their SNVs. Groups of strains expected to cluster together based 
on their evolutionary history are highlighted, as in Fig. 1. Bottom, a 
corresponding heat map, showing the mutation status of all mutations 
across the 27 MCF7 strains. Mutations that were identified in only a subset 
of the strains that were detected in above 5% of the reads (AF > 0.05) are 
shown. Yellow, presence of a mutation; grey, absence of a mutation. h, The 
number of large (>15-bp) indels and rearrangements across the 27 MCF7 
strains. Grey, indels; black, rearrangements. i, The recurrence of structural 
variants in each of the 42 (out of 60) genes for which at least one event was 
detected. j, The number of structural variants shared by each number of 
MCF7 strains. Note that this analysis is limited to the 60 genes listed in 
Supplementary Table 2.
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Extended Data Fig. 4 | Comparison of CNA landscapes between MCF7 
strains. a, CNA landscapes of a pair of MCF7 strains separated from each 
other by extensive passaging. b, CNA landscapes of a pair of of MCF7 
strains separated from each other by a genetic manipulation (introduction 
of a GFP reporter). c, CNA landscapes of 10 MCF7 strains separated by 
multiple freeze–thaw cycles, with little passaging in between. d, CNA 
landscapes of a pair of MCF7 strains that were either cultured in vitro 
(top) or cultured in vivo and treated with tamoxifen (bottom). e, CNA 

landscapes of a pair of MCF7 strains separated from each other by seven 
passages. f, CNA landscapes of a pair of MCF7 strains before (top) and 
after (bottom) the introduction of Cas9. g, CNA landscapes of a pair of 
MCF7 strains obtained from four different sources. h, CNA landscapes of 
a pair of MCF7 strains separated from each other by extensive passaging. 
Data points represent 1-Mb bins throughout the genome. Red, gains; blue, 
losses; black, normal copy numbers; yellow, differential CNAs between the 
compared strains.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization of the variation in SNV allelic 
fraction and cellular prevalence across 27 MCF7 strains and their 
single-cell-derived clones. a, Top, unsupervised hierarchical clustering 
of 27 MCF7 strains, based on the allelic fractions of all their SNVs. 
Groups of strains expected to cluster together based on their evolutionary 
history are highlighted, as in Fig. 1. Bottom, a corresponding heat map, 
showing the allelic fractions of all mutations across the 27 MCF7 strains. 
Mutations that were identified in only a subset of the strains are shown. 
The presence of a mutation is shown in colour according to its allelic 
fraction. b, The allelic fractions of an activating PIK3CA mutation (top) 
and an inactivating TP53 mutation (bottom) across strains. c, Top, 
unsupervised hierarchical clustering of 27 MCF7 strains based on their 
SNV cellular prevalence. Groups of strains expected to cluster together 
based on their evolutionary history are highlighted, as in Fig. 1. Bottom, a 
corresponding heat map, showing the cellular prevalence of all mutations 
across the 27 MCF7 strains. Mutations that were identified in only a 
subset of the strains are shown. The presence of a mutation is shown 
in colour according to its cellular prevalence. d, The distribution of the 
maximal differences in cellular prevalence (CP) of non-silent mutations, 
across 27 MCF7 strains. The peak at maximum ΔCP = 1 represents SNVs 
that are clonal in at least one strain but are nearly or completely absent 
in at least one other strain; the peak at maximum ΔCP = 0 represents 
SNVs that are detected at similar prevalence across all 27 strains; and 
the peak at maximum ΔCP ≈ 0.1 represents a group of SNVs present at 
CP ≈ 0.1 only in strain M. e, Description of the MCF7 single-cell-derived 
clones included in this study, including their parental cell line, genetic 
manipulations and relationship to one another. f, A heat map showing the 
allelic fractions of non-silent mutations in three wild-type single  

cell-derived MCF7 (scWT3–scWT5) clones and the parental population. 
The presence of a mutation is shown in colour according to its allelic 
fraction. g, A heat map showing the allelic fractions of non-silent 
mutations in five genetically manipulated single-cell-derived MCF7 
clones. For two of the clones, samples were passaged for a prolonged 
time and sequenced at multiple time points. The presence of a mutation 
is shown in colour according to its allelic fraction. h, Comparison 
of the karyotypic variation between parental and single-cell-derived 
cell populations. Histograms show the distribution of chromosome 
numbers from the parental (light grey) and single-cell-derived (dark 
grey) populations. P values indicate the significance of the differences 
between the variations (rather than the means) of the populations 
using a one-tailed Levene’s test (n = 50 metaphases per group). i, Two 
representative karyotypes of each sample. Note that all single-cell-derived 
clones are karyotipically heterogeneous. Marker chromosomes are not 
shown. Arrows point to partially aberrant chromosomes. Images are 
representative of 50 metaphases counted per sample. j, Two representative 
karyotypes from two cell populations of the same single-cell-derived clone, 
separated by six months of culture propagation. Marker chromosomes are 
not shown. Arrows point to partially aberrant chromosomes. Images are 
representative of 50 metaphases counted per sample. k, Comparison of the 
karyotypic variation between two cell populations of the same single- 
cell-derived clone, separated by six months of culture propagation. 
Histograms show the distribution of chromosome numbers from the early 
(light grey) and late (dark grey) populations. Per sample, 50 metaphases 
were counted. The P value indicates the significance of the difference 
between the means of the populations using a two-tailed Wilcoxon rank-
sum test.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Transcriptomic variation across 27 MCF7 
strains and their single-cell-derived clones. a, Comparison of the 
L1000-based MCF7 expression profiles to microarray-based expression 
profiles from CCLE. Histograms show the distributions of the Spearman 
correlations between the 27 MCF7 strains and either MCF7 (light purple), 
two MCF7 derivatives (dark purple and blue), other breast cancer cell 
lines (green) or non-breast cancer cell lines (grey). The comparison is 
based on the 978 landmark genes directly measured in L1000. b, The 
number of differentially expressed genes identified in all possible pairwise 
comparisons of MCF7 strains, using a twofold change cutoff. LFC, log 
fold change; DEGs, differentially expressed genes. c, The 10 top hallmark 
gene sets identified by GSEA to be significantly enriched among the 100 
genes that are most differentially expressed across the MCF7 strains. 
The two gene sets related to oestrogen response are highlighted in red. 
d, Comparison of gene expression variation within and between strains. 
Histograms show the distributions of gene expression variation within 
replicates of the same strain (grey), between closely related strains 
(purple) and between all strains (green). The comparison is based on the 
978 landmark genes directly measured in L1000. e, Heat map showing 
the arm-level CNA profiles of 27 MCF7 strains. Red, gains; blue, losses. 
f, GSEA reveals downregulation of the genes on chromosomes 10q, 17q 
and 21q in strains that have lost copies of these arms, and upregulation 
of the genes on chromosomes 5q, 6p, 14q and 16p in strains that have 
gained copies of these arms. g, GSEA of the upregulation of mTOR 
signalling (gene set: hallmark_MTORC1_signalling) and of genes that are 
upregulated when PTEN is knocked down (gene set: PTEN_DN.v2_UP) 
in strains that have gained PIK3CA; downregulation of the oestrogen 
response signature (gene set: hallmark_oestrogen_response_late) in 
strains that have lost ESR1; cell cycle signature (gene set: KEGG_cell_
cycle) in strains that have lost CDKN2A; and downregulation of KRAS 
signalling (gene set: hallmark_KRAS_signalling_DN) in strains that have 
lost MAP2K4. h, GSEA of the upregulation of mTOR signalling (gene 
set: hallmark_MTORC1_signalling) in strains with high prevalence of an 
activating PIK3CA mutation; upregulation of genes that are upregulated 
when PTEN is knocked down (gene set: PTEN_DN.v1_UP) in strains that 

have an inactivating PTEN mutation; and downregulation of genes that 
are downregulated when TP53 is knocked down (gene set: P53_DN.v1_
DOWN) in strains with high cellular prevalence of an inactivating TP53 
mutation. i, GSEA reveals upregulation of mTOR signalling (gene sets: 
MTOR_UP.N4.V1_UP and hallmark_MTORC1_signalling) in strains that 
have both PTEN copy number loss and an inactivating PTEN mutation. 
j, A t-SNE plot of single-cell RNA-seq data from MCF7-AA cells treated 
with bortezomib (500 nM) at different time points. Each dot represents 
a single cell, and cells are coloured by time point. k, Comparison of the 
proteasome gene expression signature across time points. l, Comparison 
of the unfolded protein response gene expression signature across time 
points. m, Comparison of two proliferation gene expression signatures, 
S (left) and G2M (right), across time points. n, Comparison of the early 
(left) and late (right) response to oestrogen gene expression signatures 
across time points. Red lines denote mean values. P values indicate 
significance from a one-way ANOVA followed by a Games–Howell post 
hoc test. n = 1,726, 2,743, 1,851 and 1,235 cells for t0, t12, t48 and t96, 
respectively. o, A t-SNE plot of single-cell RNA-seq data from a parental 
population and its single-cell-derived clone at two time points. Each dot 
represents a single cell, and cells are coloured by sample. p, Comparison 
of the transcriptional heterogeneity between a parental MCF7 population 
and its single-cell-derived clones. n = 2,904, 2,990, 3,896 and 4,583 cells 
for parental, scWT3, scWT4 and scWT5, respectively. q, Comparison of 
the transcriptional heterogeneity between two cultures of the same single-
cell clone, separated by six months of continuous passaging. n = 4,295 and 
4,116 cells, for clone9-May17 and clone9-Nov17, respectively. Box plots 
show the Euclidean distance between the cells in each cell population. 
Bar, median; box, 25th and 75th percentiles; whiskers, data within 1.5× 
IQR of lower or upper quartile. P values indicate significance from a 
one-way ANOVA followed by a Games–Howell post hoc test. r, The 10 
top hallmark gene sets identified by GSEA to be significantly enriched 
among the top differentially expressed genes between the two cultures of 
clone MCF7_GREB1_9 (May 2017 versus November 2017). The gene sets 
related to oestrogen response are highlighted in red, and those related to 
proliferation are highlighted in green.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Extensive genetic and transcriptional variation 
across 23 strains of A549. a, Top, unsupervised hierarchical clustering of 
23 A549 strains, based on their non-silent SNV profiles derived from deep 
targeted sequencing. Strains expected to cluster together based on their 
evolutionary history are highlighted in blue. Bottom, a corresponding 
heat map, showing the mutation status of non-silent mutations across 
the 23 A549 strains. Mutations that were identified in only a subset of 
the strains, which were detected in above 5% of the reads (AF > 0.05) are 
shown. The presence of a mutation is shown in yellow, and its absence in 
grey. b, The number of non-silent point mutations shared by each number 
of A549 strains. c, Top, unsupervised hierarchical clustering of 23 A549 
strains, based on the allelic fractions of their non-silent SNVs. Bottom, 
a corresponding heat map, showing the allelic fractions of non-silent 
mutations across the 23 A549 strains. Mutations that were identified in 
only a subset of the strains are shown. The presence of a mutation is shown 
in colour according to its allelic fraction. d, The allelic fractions of non-
silent mutations in six selected genes across 23 A549 strains. Note the 
inactivating frameshift mutation in SMARCA4, one of the most frequently 
mutated genes in lung adenocarcinoma24, which was detected at an allelic 
fraction of ≈1 in 9 of the strains, but was not detected at all in the other 
14 strains. e, The number of gene-level CNAs shared by each number of 
MCF7 strains. Red, copy number gains; blue, copy number losses. f, CNA 
variation in the copy number of CDKN2A. Red, copy number gains; blue, 
copy number losses. Thresholds for relative gains and losses were set at 0.1 
and −0.1, respectively. g, Unsupervised hierarchical clustering of 23 A549 
strains, based on their global gene expression profiles. Strains expected 
to cluster together based on their evolutionary history are highlighted 
in blue. h, A t-SNE plot of L1000-based gene expression profiles from 

multiple samples of nine cancer cell lines. The asterisk denotes the 
23 A549 strains profiled in the current study. i, Comparison between 
the L1000-based A549 expression profiles and the microarray-based 
expression profiles from CCLE. Histograms show the distributions of the 
Spearman correlations between the 23 A549 strains and A549 (light blue), 
other non-small-cell lung cancer cell lines (purple), other lung cancer 
cell lines (green) or non-lung cancer cell lines (grey). The comparison 
is based on the 978 landmark genes directly measured in L1000. j, The 
number of differentially expressed genes identified in all possible pairwise 
comparisons of A549 strains, using a twofold change cutoff. k, Arm-level 
gains are associated with significant upregulation and arm-level losses 
are associated with significant downregulation of genes transcribed 
from the aberrant arms. GSEA showing upregulation of the genes on 
chromosome 2q in strains that have gained a copy of that arm (left), and 
downregulation of the genes on chromosome 9q in strains that have lost a 
copy of that arm (right). l, Gene-level CNAs are associated with significant 
dysregulation of the perturbed pathways. GSEA reveals upregulation of 
the genes that are upregulated, and downregulation of the genes that are 
downregulated, when TP53 is knocked down in strains with MDM2 high-
level copy number gain; and upregulation or downregulation of the G2/M 
cell cycle checkpoint signature in strains with CDKN2A copy number 
loss or CCND1 copy number gain. m, Point mutations are associated with 
significant dysregulation of the perturbed pathways. For example, GSEA 
reveals downregulation of two PRC2-related expression signatures in 
strains with an inactivating SMARCA4. n, The 10 top gene sets identified 
by GSEA to be significantly enriched among the 100 genes that are most 
differentially expressed across the A549 strains. The six gene sets related to 
KRAS signalling are highlighted in red.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Genetic variation across multiple strains of 
additional cancer and non-cancer cell lines. a, The fraction of non- 
silent SNVs that are discordant between pairs of strains of the same  
cell line. Data are mean ± s.e.m. n, number of strain pairs compared.  
b, Arm-level CNAs arise in RPE1 samples. Plots show CNAs detected by 
an e-karyotyping analysis of 26 RPE1 samples. Red, gains; blue, losses.  
c, Comparison of variability in non-silent SNVs between non-transformed, 
partially transformed and fully transformed MCF10A samples. Box 
plots show the fraction of discordant non-silent SNVs between pairs of 
samples within each category. Bar, median; box, 25th and 75th percentiles; 
whiskers, data within 1.5× IQR of lower or upper quartile; circles, all 
data points. One-tailed Wilcoxon rank-sum test, n = 28, 112 and 14 
strain pairs, for the non-transformed, partially transformed and the fully 
transformed groups, respectively. d, Comparison of the Broad–Sanger 
allelic fraction correlations of cell lines derived from primary tumours 
and those derived from metastases. Bar, median; coloured rectangle, 
25th and 75th percentiles; width of the violin indicates frequency at 
that value. One-tailed Wilcoxon rank-sum test. e, Top, comparison of 
the chromosomal instability (CIN70) gene expression signature score 

between CCLE lines derived from primary tumours and those derived 
from metastases. Bottom, comparison of the weighted-genomic integrity 
index (wGII) between CCLE lines derived from primary tumours and 
those derived from metastases. Bar, median; coloured rectangle, 25th 
and 75th percentiles; width of the violin indicates frequency at that value. 
One-tailed Wilcoxon rank-sum test. f, Comparison of the Broad–Sanger 
allelic fraction correlations of microsatellite-stable cell lines (MSS) and 
microsatellite-unstable cell lines (MSI). Bar, median; box, 25th and 75th 
percentiles; whiskers, data within 1.5× IQR of lower or upper quartile; 
circles, all data points. One-tailed Wilcoxon rank-sum test. g, Heat maps 
show the allelic fractions of non-silent mutations in multiple strains of 
cancer cell lines. The presence of a mutation is shown in colour according 
to its allelic fraction. h, Heat maps show the allelic fractions of non-silent 
mutations in multiple strains of the non-cancer cell lines HA1E and 
MCF10A. The presence of a mutation is shown in colour according to 
its allelic fraction. Also shown is an unsupervised hierarchical clustering 
of the 15 MCF10A strains, which represent different degrees of cellular 
transformation, based on their non-silent mutation profiles.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Characterization of cell proliferation and 
morphology across 27 MCF7 strains. a, Growth response curves of 27 
MCF7 strains, based on microscopy imaging. b, Doubling time of the 27 
MCF7 strains, as measured by automatic microscopy imaging. c, Variation 
in cellular radius across the 27 MCF7 strains. d, Variation in form factor, a 
measure of circularity, across the 27 MCF7 strains. e, Variation in nuclear 
radius across the 27 MCF7 strains. a–e, Data are mean ± s.d., circles show  
individual values; n = 3 replicate wells per data point. f, Microscopy 
imaging of the 27 MCF7 strains, showing the morphological differences 
between them. Scale bar, 300 μm. Images are representative of five 
replicate wells per strain. g, Unsupervised hierarchical clustering of 27 

MCF7 strains, based on 1,784 morphological features. h, The correlation 
between proliferation rate (shown as doubling time) and the number 
of non-silent protein-coding mutations, across 18 naturally occurring 
MCF7 strains (that is, strains that have not undergone drug selection or 
genetic manipulation). Spearman’s ρ and P values indicate the strength 
and significance of the correlation, respectively. i, The correlation between 
proliferation rate (shown as doubling time) and the fraction of subclonal 
mutations, across 18 naturally occurring MCF7 strains. Spearman’s  
ρ and P values indicate the strength and significance of the correlation, 
respectively.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Characterization of drug-response variation 
across 27 MCF7 strains. a, Unsupervised hierarchical clustering of 
27 MCF7 strains, based on their response to all 321 compounds in 
the primary screen. Groups of strains expected to cluster together 
based on their evolutionary history are highlighted, as in Fig. 1. b, Pie 
chart of the classification of the screened compounds based on their 
differential activity. The response to each active compound was defined 
as ‘consistent’ if viability change was <−50% for all strains, ‘variable’ 
if viability change was <−50% for some strains and >−20% for other 
strains, or ‘intermediate’ if viability change was in between these values. 
Classification was performed using a two-strain threshold. c, Pie charts as 
in b excluding strains Q and M that were generally more drug resistant. 
Classification was performed using a one-strain or a two-strain threshold 
(left and right charts, respectively). d, Pie charts as in b using an activity 
threshold of viability change <−80%. Classification was performed using 
a one-strain threshold, either including all strains (left) or excluding 
strains Q and M (right). e, The number of gene-level CNAs shared by each 
number of MCF7 strains. Red, copy number gains; blue copy number 
losses. f, The number of non-silent point mutations shared by each 
number of MCF7 strains. The 10 naturally occurring connectivity map 
strains were averaged and considered as a single sample. g, The correlation 
between proliferation rate (shown as doubling time) and the number of 
non-silent protein-coding mutations, across naturally occurring MCF7 
strains (n = 10). Spearman’s ρ and P values indicate the strength and 
significance of the correlation, respectively. The 10 naturally occurring 
CMap strains were averaged and considered as a single sample. h, The 
correlation between proliferation rate (shown as doubling time) and 
the fraction of subclonal mutations, across naturally occurring MCF7 
strains (n = 10). Spearman’s ρ and P values indicate the strength and 
significance of the correlation, respectively. The 10 naturally occurring 
CMap strains were averaged and considered as a single sample. i, The 
number of differentially expressed genes identified in all possible pairwise 
comparisons of MCF7 strains, using a twofold change cutoff. The 10 
naturally occurring CMap strains were averaged and considered as a single 
sample. j, Pie charts of the classification of the screened compounds based 
on their differential activity. The response to each active compound was 
defined as consistent if viability change was <−50% for all strains, variable 
if viability change was <−50% for some strains and >−20% for other 
strains, or intermediate if viability change was in between these values. 
Classification was performed using a one-strain or a two-strain resistance 
threshold (top and bottom charts, respectively). The 10 naturally 
occurring CMap strains were averaged and considered as a single sample. 

k, The dose–response curves for ten compounds are shown. For each 
compound, eight concentrations were tested in each strain. Two sensitive 
strains and two insensitive strains are plotted. Each data point represents 
the mean of two replicates. Nutlin-3, a compound that had no toxicity 
against any of the strains in the primary screen, was included as negative 
control. Romidepsin, a compound that killed all strains very efficiently in 
the primary screen was included as positive control and turned out to be 
differentially active at lower concentrations. l, The Pearson’s correlation of  
the two compound screen replicates across the MCF7 strains. m, Strains 
more sensitive to proteasome inhibitors exhibit higher proteasome 
activity. The chymotrypsin-like activity of the proteasome was measured 
in three sensitive and three insensitive strains. Data are mean ± s.d., one-
tailed t-test, n = 4 replicate wells. n, Western blots of the relative protein 
expression levels of the proteasome 19S complex members PSMC2 and 
PSMD1 in three sensitive and three insensitive strains. The expression of 
α-tubulin was used for normalization. The experiment was repeated once, 
with n = 3 strains per group. For gel source data, see Supplementary Fig. 1. 
o, Quantification of the relative expression of PSMC2 and PSMD1. Data 
are mean ± s.d., one-tailed t-test, n = 3 strains per group. p, Upregulation 
of the KEGG cell cycle signature in strains sensitive to the cell cycle 
inhibitor CDK/CRK inhibitor (n = 3) compared to insensitive strains 
(n = 12). q, Upregulation of mTOR signalling in strains sensitive to the 
PI3K inhibitor PP-121 (n = 11) compared to insensitive strains (n = 5). 
r, Downregulation of the genes that are downregulated when ALK is 
knocked down in strains sensitive to the ALK inhibitor TAE-684 (n = 4) 
compared to insensitive strains (n = 15). s, Upregulation of IL-6–JAK–
STAT3 signalling in strains sensitive to the STAT inhibitor nifuroxazide 
(n = 9) compared to insensitive strains (n = 6). t, Upregulation of the 
genes that are upregulated when AKT is overexpressed in strains sensitive 
to the AKT inhibitor triciribine (n = 2) compared to insensitive strains 
(n = 8). u, Upregulation of hypoxia signalling in strains sensitive to the 
HSP inhibitor 17-AAG (n = 3) compared to insensitive strains (n = 15). 
v, Downregulation of xenobiotic metabolism signatures in strains M and 
Q (n = 2), which exhibited an increased resistance to most compounds 
compared to the other strains (n = 25). w, Upregulation of the early and 
late oestrogen response signatures, in strains most sensitive to the ER 
inhibitor tamoxifen (n = 5) compared to the least sensitive strains (n = 5). 
x, Sensitivity to oestrogen depletion and to tamoxifen is associated with 
the copy number status of ESR1. Heat maps represent the relative viability 
in oestrogen-depleted medium (top) and in response to tamoxifen (at 
16.6 μM; bottom).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Comparison of genetic-, transcriptomic- and 
drug-response-based clustering trees, genomic distances and CRISPR 
dependencies. a, Comparison of clustering trees using the Fowlkes–
Mallows approach. The dendrograms were based on SNVs, gene-level 
CNAs, arm-level CNAs, gene expression profiles and drug response 
patterns and were all compared to each other. The Fowlkes–Mallows 
index (Bk) was computed for all potential numbers of clusters (k values) 
ranging from 5 to 26. The red lines indicate the observed Bk values, 
whereas the grey lines represent the 95% upper quantile of the randomized 
distribution. The maximum Bk value represents the degree of similarity 
between the compared pair of dendrograms. The grey shading represents 
the difference between the observed Bk values and those of the 95% 
upper quantile of the randomized distribution. b, Force-directed layout 
of screened lines using a similarity matrix determined by the probability 
of cell lines clustering together in dependency space. Cell lines (nodes) 
are coloured by lineage. c, Left, the overlap of dependencies in KPL1 and 
MCF7 using corrected CERES scores, with genes showing depletion effects  
in all cell lines (that is, pan-essential genes) excluded. The threshold 
for dependency was set as a CERES score <−0.5. Right, overlap in 
dependency with genes of indeterminate dependency status (CERES 
scores between −0.4 and −0.6) in either cell line excluded. d, A two-
sample GSEA of MCF7 and KPL1 against the oestrogen response gene 
sets (n = 1 sample per group). Expression of the oestrogen signalling 
pathway is strongly enriched in MCF7. e, The correlation between ESR1 
dependency values and the single-sample GSEA enrichment scores of the 
oestrogen response hallmark gene sets (n = 27 cell lines). The difference 
in oestrogen response signalling between MCF7 and KPL1 predicts their 
differing levels of dependency on ESR1. f, The correlation between GATA3 
dependency and GATA3 protein levels (z-scored values for reverse-phase 
protein arrays; n = 27 cell lines). The difference in GATA3 protein levels 
between MCF7 and KPL1 predicts their differing levels of dependency on 

GATA3. Spearman’s ρ and P values indicate the strength and significance 
of the correlations, respectively. g, Top, comparison of proliferation rates 
between a parental MCF7 population and its single-cell-derived clones. 
Bottom, comparison of proliferation rates between two cultures of the 
same single-cell clone, separated by six months of continuous passaging. 
Box plots show the population doubling time of each sample. Bar, median; 
box, 25th and 75th percentiles; whiskers, data within 1.5× IQR of lower 
or upper quartile; circles, all data points. Two-tailed t-test; n, replicate 
wells. h, Top, comparison of the sensitivity to oestrogen depletion between 
a parental MCF7 population and its single-cell-derived clones. Bottom, 
comparison of the sensitivity to oestrogen depletion between two cultures 
of the same single-cell clone, separated by six months of continuous 
passaging. Box plots show the relative growth rate in oestrogen-depleted 
medium. Bar, median; box, 25th and 75th percentiles; whiskers, data 
within 1.5× IQR of lower or upper quartile; circles, all data points. Two-
tailed t-test; n, replicate wells. i, The correlation between sensitivity to 
tamoxifen (relative viability at 20 μM) and the sensitivity to oestrogen 
depletion (relative growth rate), across the parental MCF7 populations and 
their single-cell clones (n = 7). Spearman’s ρ value and P values indicate 
the strength and significance of the correlation, respectively. j, Correlation 
plots between various measures to estimate cell line strains (n = 351 strain 
pairs). CNA distances (based on ultra-low-pass whole-genome sequencing 
or targeted sequencing), SNV distances, gene expression distances and 
drug response distances were compared to each other. CNA distance based 
on ultra-low-pass whole-genome DNA-sequencing was determined by 
the fraction of the genome affected by discordant CNA calls. CNA and 
SNV distances based on targeted sequencing were determined by Jaccard 
indices. Gene expression and drug-response distances were determined by 
Euclidean distances. Spearman’s ρ and P values indicate the strength and 
significance of the correlation, respectively.
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Extended data table 1 | Implications of this study for the use of cell lines in cancer research

A summary of the main findings of this study, their practical implications and recommendations for addressing them.

© 2018 Springer Nature Limited. All rights reserved.
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Sample size No statistical methods were used to determine sample size -- for each cell line, as many strains as possible were collected.

Data exclusions Strain MCF7-M was found to be an outlier strain, consistent with having been through strong bottlenecks, and was therefore excluded from 
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Sciences) and PSMD1 (C-7; Santa-Cruz), beta-Actin (N-21; Santa Cruz), ERα (F-10; Santa Cruz). 

Validation All antibodies used in this study were validated by the manufacturers, and used in previous publications. Antibodies were 
validated in this study only by the size of the bands detected by them.
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Cell line source(s) The following cell lines from the following sources were used in this study:  
MCF7: from ATCC, CCLE, Clontech, CMap, BHC, Inserm 
A549: from ATCC, CCLE, CMap, Amon lab, Brugge lab, Meyerson lab, Hahn lab 
HT29: CMap, Amon lab, Bass lab 
MDAM453: CCLE, Brugge lab 
A375: CMap, Johannessen lab 
VCaP: CMap, Hahn lab 
PC3: CMap, Garraway lab 
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Ben-Men-1: Dunn lab 
HA1E: CMap, Meyerson lab 
MCF10A: Brugge lab, Klefstrom lab, Yu lab, Golub lab, Horizon Discovery

Authentication Cell line authentication was performed by DNA Fingerprinting analysis with 44 polymorphic loci. 

Mycoplasma contamination All cell line were confirmed to be negative to mycoplasma using the MycoAlertTM Mycoplasma Detection Kit (Lonza).

Commonly misidentified lines
(See ICLAC register)

Cell lines are not in the list of misidentified cell lines, except for KPL-1. This cell line 
was used precisely because it was reported (and confirmed by us in this study) to be a strain of MCF7.
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